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Kinetic model of phase separation in binary mixtures with hard mobile impurities
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We develop a mean-field rate-equation model for the kinetics of phase separation in binary mixtures with
hard mobile impurities. For impurities preferentially wet by one of the components, the phase separation is
arrested in the late stage. The ‘‘steady-state’’ domain size depends strongly on both the particle diffusion
constant and the particle concentration. We compare theoretical results with the simulation data and find good
qualitative agreement.@S1063-651X~99!03510-2#

PACS number~s!: 64.75.1g, 64.60.Ak, 66.30.Jt
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I. INTRODUCTION

In the past decade, the use of solid filler particles to i
prove the physical properties of polymer blends has beco
widespread in the production of high-performance mater
@1#. In particular, the fillers can increase the toughness, p
cessibility, heat distortion temperature, and decrease the
permeability of the blends@2#. Despite the utility of filled
polymer systems, many aspects of the physical and mech
cal behavior of these composites are still poorly understo
One of the most interesting and important questions d
with the structural evolution and final morphology of a b
nary polymer blend in the presence of the fillers. Und
standing the influence of the particles on the thermodyn
ics and kinetics of binary mixtures is necessary for predict
the long-term stability and mechanical properties of the co
posites.

Phase separation in binary mixtures has been studied
tensively @3#. In numerous experimental and computation
studies, it has been shown that the characteristic domain
R(t) grows asymptotically asR(t);ta, with a51/3
~Lifshitz-Slyozov law! @4#. Hydrodynamic effects increas
the growth exponent and, for the long-time behavior of
nary fluids, different values ofa ranging from 1/2 to 1@3,5–
7# have been suggested. The structure factorS(k,t)
5^C(k,t)C(2k,t)&, whereC(k,t) is a Fourier transform
of the order parameterC(r ,t), apparently obeys the dynam
cal scaling hypothesis,

S~k,t !'Rd~ t !F„kR~ t !…, ~1!

where F(x) is a time-independent, universal scaling fun
tion. This observation has been confirmed by many num
cal simulations and experiments@3,8,9#.

The introduction of a third component in the form of sol
mobile particles significantly increases the complexity of
problem. Particles introduce new length and time sca
generate new interfaces, and modify the morphology of
system at all stages. One can expect that the simple dyn
cal scaling hypothesis is no longer valid, and that many
ferent forms of asymptotic behavior can be found depend
on the particle-particle and particle-fluid interactions. N
merical studies of ternary water-oil-surfactant mixtures@10–
12# showed many new and interesting features, e.g.,
PRE 601063-651X/99/60~4!/4352~8!/$15.00
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slowing down of the coarsening process at the late stage
to interface pinning by the surfactant particles. However,
merical methods employed in these studies~hybrid model
@10,11# and two-order parameter model@12,13#! are not suit-
able for describing hard filler particles because these mo
do not take into account the excluded volume and wett
interactions between the fillers and the polymer.

Recently, we proposed a new model to describe ph
separation in a binary mixture with mobile hard particles th
are preferentially wet by one of the two components@14#.
This model combines the cell dynamical systems~CDS!
equation of motion for the order parameter with Langev
dynamics for the hard particles. Excluded volume constra
are enforced for all particle jumps. On the boundary of ea
particle, zero-flux and constant-order parameter conditi
are implemented at every time step. The model allows u
analyze the role of particles in the phase separation dyn
ics. We show that as the particle concentration is increa
the domain growth slows down progressively from t
Lifshitz-Slyozov t1/3 law. This result is in qualitative agree
ment with experimental observations of Tanakaet al. @15#
We also find that for large concentrations of particles,
domain growth stalls, and the final domain size is a com
cated function of the particle concentration and the diffus
constant.

The observed result~slowing down of the domain growth
at the late stage! bears a remarkable resemblance to so
recent studies indicating the possibility of pinning in phas
separating systems with quenched disorder. Huse and He
@16# suggested a theoretical mechanism of pinning~logarith-
mic slowing down! in Ising systems with nonconserved d
namics and static random impurities. Simulations by Sro
vitz and Hassold@17# showed late-stage pinning in th
nonconserved Ising system with mobile impurities. Guy
et al. @18# demonstrated the late-stage pinning in the co
served time-dependent Ginzburg-Landau kinetics w
quenched impurities. Glotzeret al. @19# observed and theo
retically described pinning in an Ising lattice gas with tw
disparate energy scales. Slowing down of the phase sep
tion was experimentally observed for binary fluids in ge
@20,21#. All these different systems exhibit different scalin
laws and different pinning mechanisms; however, they
present strong evidence that any impurities in pha
separating binary mixtures tend to stop or significantly sl
4352 © 1999 The American Physical Society
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down the phase-separation process at the late stage. The
of hard mobile particles with excluded volume has not
been studied in this context. Understanding the behavio
this system is important for the description and classificat
of different pinning mechanisms in the phase-separation
cess.

In this paper, we present a simple rate-equation mo
describing the late-stage slowing down of the domain gro
in binary mixtures with hard mobile particles, and compa
theoretical predictions with computer simulation results. T
model is described in Sec. II. In Sec. III, we describe
computational method@14# used to study the particle dynam
ics in a phase-separating mixture. Simulation results
compared with theoretical predictions. Finally, in Sec. IV w
summarize our results and describe possible extension
the model.

II. THEORY

A. Kinetic equations

We consider a phase-separating, binaryAB mixture. The
system is characterized by the order parameterC5rA
2rB (rA , rB are the local densities of theA andB compo-
nents!. In this mixture, hard particles of radiusR0 are ran-
domly dispersed. The particle concentrationn is small, i.e.,
the interparticle distancen21/d@R0.j, wherej is the width
of an AB interface. Particles are preferentially wet by com
ponentA and move diffusively, with a diffusion constantD.
The system separates intoA-rich and B-rich domains. Let
N2(t) and n2(t)5N2(t)/Ld be the total number and th
density of particles that are inB-rich domains at timet, and
N1(t)5N2N2(t), n1(t)5n2n2(t) be the total number
and the density of particles that are inA-rich domains. Here,
L is the system size andd is the space dimensionality. In th
following, we will setd52, although the theory can be ea
ily extended to any dimensionality.

The densitiesn1 andn2 change due to the motion of th
particles and the interfaces. Such changes can be desc
as ‘‘reactions’’ of particles with interfacial segments. Sin
these ‘‘reactions’’ involve interfaces, they also affect the d
main growth and coarsening rate. In particular, one can
pect that when the number of particles and their mobi
increase, the coarsening rate would slow down at the v
late stage of the phase separation; this conclusion is
firmed by the simulations@14#.

To derive kinetic equations for this system, we consid
the two most elementary processes between particles an
terfaces. In the first one@Fig. 1~a!#, particles simply jump
over the nearest interface. If we denote the particle in
A-rich phase asA, the particle in theB-rich phase asB, and
the interface segment asC, the reaction can be written as

A1C

k21

k1

B1C, ~2!

with reaction constantsk1 and k21 for the direct and the
inverse reactions. In the second reaction@Fig. 1~b!#, the
boundary layer of aB particle merges with theA domain,
increasing the total length of the interface between the
domains. The reaction can be written as
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B1C→
k2

A1 lC, ~3!

wherek2 is the reaction constant andl is the number of the
newly created interfacial segments. It can be intuitively se
that the reverse reaction can be disregarded since the p
ability of an interface spontaneously ‘‘surrounding’’ anA
particle is extremely small, especially at the late stage, wh
interfaces are relatively ‘‘flat.’’~Taking the reverse reactio
into account does not change the qualitative results
merely renormalizes the effective domain growth rate.!

To write down kinetic equations, we introduce a new va
able, the ‘‘interface area density’’s5S/Ld ~whereS is the
total area of allAB interfaces andL is the system size!. This
variable is inversely proportional toR(t), the characteristic
domain size,s'1/R(t) @22#. In the absence of particles,s
decreases according to the Lifshitz-Slyozov law:s;t21/3.
When particles are present, additional interfaces are cre
according to reaction~3!, and the overall evolution ofs can
be described by the following differential equation:

ds

dt
52As41k2~ l 21!n2s. ~4!

The proportionality constantA has dimensionalityL3T21

and describes the growth of the characteristic size in
particle-free system. The concentration of the particles in
B phase is described by a second kinetic equation,

dn2

dt
52k2n2s2k21n2s1k1n1s, ~5!

and n15n2n2 . Equations~4! and ~5! must be supple-
mented with initial conditions fors(t50) and n2(t50).
Although these equations are highly nonlinear, and the g
eral analytical solution cannot be obtained, we can study
fixed points and numerically describe the evolution of t
system@23#.

B. Dynamics

We analyze the evolution of the system numerically
integrating Eqs.~4! and ~5!. To perform the integration, we

FIG. 1. Elementary processes in the particle-interface inte
tion: particle ‘‘jumps’’ over the interface~a!; interface ‘‘overtakes’’
B particle ~b!. Note that the particles are wet by componentA.



y

s

nt

,

t
th

th
es
si
n-

y
r-

a

in

is
c

ses

rent
fu-

icle

nly

c’’

en-

en-
the
n-
ts,

e
late
its a
he
ent
cal
icu-
e
mic
is
s.

r
he
th

ion
ase

ith
ng
ing
fer
ny
, to
re
de-

ter,
the

4354 PRE 60GINZBURG, PENG, QIU, JASNOW, AND BALAZS
first convert Eqs.~4! and~5! into the dimensionless form b
introducing new variables,t5t/T, x5n2 /n, y5sR0

5R0 /R, and parameters,T5R0
3/A, l5k2( l 21)R0

2/A, e1

5k1R0
2/A, and e215k21R0

2/A. The new dimensionles
equations have a simple form,

dy

dt
52y412lfxy, ~6!

dx

dt
52~l1e11e21!xy1e1y, ~7!

wheref is the two-dimensional ‘‘volume fraction’’ of the
particles. We use a simple Euler scheme and forward i
grate Eqs.~6! and~7! with a time stepdt50.25 in the range
0,t,10 with the initial conditionsx(0)50, y(0)50.8.
We setl51.0, f50.16, e2153.4e1 , A50.023, R052, T
5350, and perform calculations fore150.1,0.2,0.375,0.75
and 1. ~The ratio e21 /e1 is selected to fit the simulation
results for the dependence of the final domain sizeR* on the
diffusion constantD—see Sec. III.! The resulting ‘‘trajecto-
ries’’ y(t) andx(t) @or their dimensional analogsR(t) and
n2(t)# are compared with the simulation data in Sec. III.

C. Fixed point

To find the fixed points of the system of Eqs.~4! and~5!,
we set the right-hand sides of both equations to zero. I
possible to solve the two equations exactly, and thus find
there is one stable fixed point:

n2* 5
k1

k21k11k21
n, ~8!

R* 5
1

s*
5S A

k2ln2*
D 1/3

5S A~k21k11k21!

k1k2nl D 1/3

. ~9!

Notice that, in general, the domain size saturates in
mean-field analysis for any finite concentration of particl
In order to elucidate the dependence of the final domain
on the diffusion constantD, we need to postulate the depe
dence of the rate constantsk1 , k21, andk2 on D. Both k1
andk21 must be proportional toD because they are directl
related to the ‘‘hopping probability’’ of particles near inte
faces. On the other hand,k2 has a contribution from the
motion of an interface segment near a stationary particle,
thus can be consideredD-independent~at least to a first ap-
proximation!. With this in mind, we obtain

R* 5R0S l1~a11a21!D

2fa1D D 1/3

;~A/Dn!1/3~11bD !1/3,

~10!

wherea15e1 /D, a215e21 /D, b;R0 /A, andl has been
defined above. These constants are independent ofD andn.

It is easy to see from Eq.~10! that R* decreases when
either the particle density or the diffusion constant are
creased. For largeD (D@b21), R* is D-independent; for
small D (D,b21), R* }D21/3. Note that for very smallD,
the model must break down. Indeed, once the character
sizeR* becomes comparable with the interparticle distan
e-
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n21/2, we can no longer neglect the multiparticle proces
~proportional ton2 and higher-order terms inn). For such

systems, interface pinning would presumably occur atR̃
;n21/2, preempting the steady state described by the cur
theory. This condition imposes a lower bound on the dif
sion constant:D.An1/2. Below this value, the final domain
size is D-independent and equal ton21/2. Thus, the final
domain size depends strongly onD in the regionAn1/2,D
,A/R0. In this region,R* }D21/3, while for D@A/R0 , R*
is almostD-independent.

The dependence of the final domain size on the part
concentration is also interesting. We find that forD50, the
final domain size is proportional ton21/2 @25#. This result is
due to the fact that when the particles are immobile, the o
relevant length scale is the interparticle distancen21/2. For
nonzeroD, there is a crossover between the ‘‘geometri
pinning R̃;n21/2 and the ‘‘kinetic’’ steady-state sizeR*
;(A/Dn)1/3. This crossover occurs near the particle conc
tration n̄;(D/A)2: when n@n̄, the characteristic length is
D-independent and scales asn21/2; when n!n̄, the charac-
teristic length scales as (Dn)21/3.

The results of the fixed-point calculation and the dep
dence of the final domain size on the particle number and
diffusion constant qualitatively resemble earlier experime
tal, theoretical, and numerical data. In their experimen
Tanakaet al. @15# showed that for a relatively high particl
density, the characteristic domain size is frozen at the
stage. For smaller densities, the characteristic size exhib
slow growth, with a growth exponent that is a function of t
density, but always less than the Lifshitz-Slyozov expon
1
3 . Similar features were found in numerical and theoreti
models of phase ordering with quenched disorder. In part
lar, Huse and Henley@16# suggested that in an Ising-typ
system with a nonconserved dynamics, there is a logarith
slowing down of the domain growth. This slowing down
due to interface pinning on quenched immobile impuritie
Srolovitz and Hassold@17# independently found a simila
behavior in their dynamical Monte Carlo simulations of t
nonconserved Ising model with diffusing impurities wi
spin 0 ~surfactantlike point particles!. They also found that
the final characteristic domain size depends on the diffus
constant; the increase in defect mobility leads to the decre
in the final domain size. Gyureet al. @18# analyzed the con-
served time-dependent Ginzburg-Landau system w
quenched immobile impurities and also found a slowi
down at the late stage, consistent with the interface pinn
model of Huse and Henley. Although all these studies of
qualitative support to our theory, it is not clear whether a
of them are actually in the same universality class. Thus
test predictions of the mean-field kinetic model in a mo
systematic way, we performed a series of simulations
scribed in the next section.

III. SIMULATIONS

We consider a phase-separating, symmetric, binaryAB
mixture that is characterized by the scalar order parame
C. The phase-separation dynamics are described by
Cahn-Hilliard equation,
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]C

]t
5G“2

dF
dC

1j, ~11!

whereG is a kinetic coefficient,j is a conserved zero mea
Gaussian white noise with covariancêj(r ,t)j(r 8,t8)&
52G1“

2d(r2r 8)d(t2t8), andF is a free energy usually
given by the Ginzburg-Landau functional,

F5E dr H 2
r

2
C21

u

4
C41

C

2
~¹C!2J . ~12!

Into this system we introduce small spherical particles
radius R0 that undergo Brownian motion. The particle d
namics are described by the following Langevin equation

Ṙi5M fi1hi, ~13!

whereM is mobility, fi is the force acting on thei th particle
due to all the other particles, andh represents the Gaussia
white noise ^hia(r ,t)hjb(r 8,t8)&5G2d(r2r 8)d(t
2t8)d i j dab . In this study, we neglect interactions betwe
particles~i.e., fi50! and only take into account the particle
diffusive motion. We also disregard osmotic effects~i.e.,
coupling between the particle motion and the order para
eter field!.

The simulation is carried out in two dimensions; our la
tice is 2563256 sites in size, with periodic boundary cond
tions in both thex andy directions. A cell-dynamical-system
~CDS! method@26# is used to update the value ofC for the
phase-separatingAB mixture. Note thatC51(21) corre-
sponds to the equilibrium order parameter for theA-rich
(B-rich! phase. By employing CDS modeling~rather than a
conventional discretization scheme!, we can significantly in-
crease the computational speed of the simulation. To si
late the particle dynamics, we discretize Eq.~13! and only
allow the particles to move between different lattice sites
‘‘Kawasaki exchange’’ mechanism is used for each parti
move: first, the order parameter values from all the cells
be occupied by a particle in its ‘‘new’’ position are moved
the ‘‘old’’ position; next, the boundary and excluded volum
conditions are imposed for the order parameter at the ‘‘ne
particle position. This mechanism ensures conservation
the order parameter. Such dynamics may break down
large particle mobilities, so we considered only the ca
where the diffusion constant is rather low~almost all particle
‘‘jumps’’ are to neighboring sites!. The discretized equation
of motion have the following form:

C~r ,t11!5F@C~r ,t !#2^^F@C~r ,t !#2C~r ,t !&&1j~r ,t !,

F@C~r ,t !#5 f ~C~r ,t !!1D@^^C~r ,t !&&2C~r ,t !#,

f ~C!5A tanh~C!,

Ri~ t11!5Ri~ t !1M fi1hi~ t !, ~14!

where^^* && is the isotropic spatial average and@^^* &&2* #
can be thought of as a discretized generalization of the
placian. In the following studies we setA51.3, D50.5,
M51.0, andG150.

The functionF in Eq. ~14! has a local driving termf and
a term arising from the interaction with other sites; the m
f

-

u-

e
o
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of
or
e

a-

p

f (C) controls the local dynamics of each site. It is critic
that f has a single unstable fixed point and two stable fix
points symmetrically located on each side of the unsta
fixed point. Its exact functional form is not important fo
studying the universal properties of the phase-separation
namics, as noted in Ref.@26#. Here, we select the ma
f (C)5A tanh(C), with A,1 above the critical temperatur
andA.1 below.

In addition to these equations, the following bounda
condition is imposed in the vicinity of each particle
C(r ,t)5Cs and ]nF(r ,t)50 if R0,ur2Ri(t)u<R01a,
where a is the lattice spacing and]n denotes the norma
derivative. Here, we setCs51 so that the particles ar
‘‘coated’’ by fluid A. This condition can mimic either of two
cases:~i! the filler particles have been pretreated with a po
mer coating, or~ii ! the adhesion between one of the tw
components~e.g., fluidA) and the surface of the particle i
very strong compared to bothkT and the surface adhesion o
the other component. The]nF50 condition ensures zero
flux of C into the particles sinceF plays the role of a chemi-
cal potential.

We performed a series of simulations on a 2563256 lat-
tice, varying the particle numberN from 0 to 300 and keep-
ing the diffusion constant fixed atD50.025. These results
have been reported elsewhere@14#. The characteristic do-
main size showed a marked slowing down for the syste
with large values ofN (N.150); however, the simulation
time (T520 000 time steps! was insufficient to observe a
complete saturation of the domain size, much less to de
mine the origin~kinetic or geometric! for the pinning mecha-
nism.

FIG. 2. Final domain sizeR* vs diffusion constantD for the
N5600 system: linear scale~a! and scaled coordinatesr
5(R* )3D vs D ~b!. Solid line represents the best fit,r5(R* )3D
51.0514.80D. Vertical lines represent error bars.
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FIG. 3. Morphologies of a phase separating system withN5600 particles for different diffusion constants:D50.004, t550 000~a! and
t580 000~b!; D50.015,t550 000~c! andt580 000~d!; D50.04, t550 000~e! andt580 000~f!. The white regions represent theA-rich
phase, the dark regions correspond to theB-rich phase, and the small black squares represent the particles.
e
d
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The difficulty in studying the late stage of the phas
separation process, and especially the saturation of the
main size, stems from the fact that the parameter space
such studies is very narrow. In the system we consider,
example, one cannot observe the slowing down of the
main growth until the number of particles is larger thanN
-
o-

for
r

o-

5200; the ‘‘true’’ saturation is not observed untilN5500
even up toT5100 000 time steps. But, increasing the nu
ber of particles makes simulations extremely slow~since, at
every time step, more and more operations are neede
ensure excluded volume constraints!. As a result, the late-
stage pinning can be studied only in a relatively narrow w
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dow of particle concentrations (500,N,800) and the direct
comparison of the theory and simulation is somewhat d
cult. It is easier to vary the diffusion constantD; however,
whenD becomes large (D.0.08), the dynamics become un
stable and dependent on specific rules of the order param
updates during particle ‘‘jumps.’’ Indeed, the proposed l
tice dynamics require that most particle moves occur o
between the neighboring sites. Thus, the diffusion cons
can be varied only in the region 0,D,0.08.

To study the dependence of the characteristic domain
on the particle diffusion constant, we performed a set
simulations for the system withN5600(f50.16), for five
different values ofD50.0038, 0.0076, 0.015, 0.030, an
0.038. The domain growth slows down for all systems a
approximately 20 000 timesteps. For everyD, the results
were averaged over two independent runs of 100 000 t
steps each. In Fig. 2~a! we plot the dependence of the fin
domain sizeR* on D and the best two-parameter fit from E
~10!, with l51.0, a1525.0, anda21585.0. The same dat
are replotted in Fig. 2~b! using the scaled coordinatesr
5(R* )3D versusD, in which the curver(D) should be a
straight line according to Eq.~10!. It can be seen that th
agreement between the simulation data and the theory is
sonably good, albeit over a limited range~a factor of 10! in
diffusion constant.

To better visualize the morphologies of the systems in
‘‘steady-state’’ regime, snapshots of the configurations at
550 000 andt580 000 are shown for three different diffu
sion constants@Figs. 3~a!–3~f!#. It can be seen that for th
smallestD @Figs. 3~a! and 3~b!#, the majority of the domains
did not change their shape or position. For the intermed
D @Figs. 3~c! and 3~d!#, a small change in shape or positio
occurs for a significant fraction of all domains. Finally, f
the largestD @Figs. 3~e! and 3~f!#, most domains have some
what changed their shape between the two snapshots.
that the characteristic size does not change within the p
although clearly it is different for systems with different va
ues ofD. These pictures clearly illustrate the structural d
ference between the ‘‘geometric’’ pinning seen for the s
tems with immobile or slow particles@~a! and ~b!# and the

FIG. 4. Number ofB particles in the ‘‘steady state’’N2* vs the
‘‘steady-state’’ domain size,R* ~log-log plot!. Solid line has a
slope of23.
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dynamical ‘‘steady-state’’ saturation of the domain grow
observed for the systems with fast particles@~c!–~f!#.

Another important characteristic of the late-stage ‘‘stea
state’’ is the concentration of particles in the ‘‘wrong
phase. In the simulations, we consider a particle to be in
‘‘wrong’’ ~B! phase if the total order parameter summed o
all lattice sites adjacent to the particle’s ‘‘boundary layer’’
negative. It can be seen from Eq.~8! that the dependence o
N2* on R* within the mean-field theory is described by a
exact power law,N2* }(R* )2d, with d53. Within the mean-
field approximation, this exponent is independent of t
space dimensionalityd. We plot the dependence ofN2* on
R* , calculated for several values ofD and for the fixedN
5600, in Fig. 4. The data clearly are consistent with t
theoretical prediction ofd53, although over a limited range
in D.

Finally, we apply our mean-field rate-equation model
describe the dynamics of the system. Instead of looking o
at the fixed point, we numerically integrate Eqs.~4! and ~5!
with initial conditionsN2(t50)50, s(t50)50.8 to obtain
the ‘‘trajectories’’ R(t)51/s(t) and N2(t). The details of
the integration are described in Sec. II. In Figs. 5~a! and
5~b!#, simulated and theoretical trajectoriesR(t) are plotted

FIG. 5. Characteristic domain sizeR(t)—simulation results~a!
and calculations using Eqs.~4! and ~5!~b!.
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for several values ofD. It can be seen that the mean-fie
trajectories reproduce the general trends~the saturation do-
main size increases with a decrease inD; the transition from
the early growth regime to the late-stage regime occurs
proximately at the same time for all the curves!. But the
mean-field calculations underestimate the width of the cro
over region. This phenomenon is also seen in the calcula
of the dependence ofN2 on t, where the role of fluctuations
is even more significant and the crossover region beco
even broader.

IV. CONCLUSIONS

We have developed a mean-field rate-equation mode
describe the influence of hard mobile particles on the
stage of phase separation in binary mixtures. This mode
based on an assumption that in a relatively dilute~low-
particle-density! system, the influence of particles can be p
marily attributed to their interactions with interfaces. Due
the asymmetry between the two phases~the particles are
preferentially wet by componentA), the interaction of a sta
tionary ‘‘B particle’’ with a moving interface has no invers
reaction~the interface cannot pass through an ‘‘A particle’’!.
This irreversible ‘‘reaction,’’ in combination with other~re-
versible! processes due to the particle diffusion, creates n
interfaces and thus dynamically slows down the coarsen
process. If the particles are sufficiently mobile, interface c
ation and annihilation offset each other, thereby forming
‘‘steady state.’’ Although interfaces are highly mobile an
domains change shape relatively rapidly, the character
size does not grow, and the overall morphology looks sim
during the late-stage regime. This mechanism is differ
from the ‘‘geometrical’’ pinning described for the case
immobile impurities. In that case, interfaces simply can
move because of the network of obstacles, and all dom
remain unchanged for very long times. When the partic
move sufficiently rapidly, the ‘‘steady state’’ behavior is o
served, while when their motion is sufficiently slow, th
‘‘geometrical’’ pinning is observed.

The predictions of the kinetic theory have been tested
.

p-

s-
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es

to
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-
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y

computer simulations. Using the combined cell dynami
systems~CDS! and Langevin equations, we simulated pha
separation in the presence of hard mobile filler particles
studied the dependence of the domain growth rate on
particle mobility, keeping the total number of particles fixe
(N5600 on a 2563256 latice!. We observed a complet
saturation of the domain growth at the late stage and de
mined the characteristic domain size at saturation. The
pendence of this characteristic size on the particle diffus
constant shows a monotonic decrease, in qualitative ag
ment with theoretical predictions. We also measured the
pendence of the number of particles in the ‘‘wrong’’ phas
N2 , on the characteristic size,R* . The results for this de-
pendence are consistent with the theoretical prediction,N2

}(R* )23, albeit over a relatively limited range inR* ~a
factor of 2!. To verify the exponentd, additional simulations
and/or theoretical studies are necessary.

The proposed dependences of the ‘‘steady-state’’ dom
sizeR* on the diffusion constantD and the particle densityn
have a mean-field nature and are expected to break dow
largen and/or for smallD, when the interparticle correlation
and the density fluctuations become important. It is also p
sible that some additional corrections should be introdu
via the dependences of the kinetic coefficientsA,k1 ,k21 ,
andk2 on the ‘‘observables’’D andn. Elucidation of these
corrections would also require significant computation
studies to increase the range of available densities and d
sion constants.

We plan to expand the proposed kinetic model to stu
the effects of other phenomena, such as wetting stren
flow field, and interparticle interaction, on the kinetics
phase separation. Such studies are currently underway.
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