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Kinetic model of phase separation in binary mixtures with hard mobile impurities
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We develop a mean-field rate-equation model for the kinetics of phase separation in binary mixtures with
hard mobile impurities. For impurities preferentially wet by one of the components, the phase separation is
arrested in the late stage. The “steady-state” domain size depends strongly on both the particle diffusion
constant and the particle concentration. We compare theoretical results with the simulation data and find good
qualitative agreemenfS1063-651X99)03510-3

PACS numbd(s): 64.75+g, 64.60.Ak, 66.30.Jt

I. INTRODUCTION slowing down of the coarsening process at the late stage due
to interface pinning by the surfactant particles. However, nu-
In the past decade, the use of solid filler particles to im-merical methods employed in these studibgbrid model
prove the physical properties of polymer blends has becomgl0,11] and two-order parameter modél2,13)) are not suit-
widespread in the production of high-performance materialsible for describing hard filler particles because these models
[1]. In particular, the fillers can increase the toughness, prodo not take into account the excluded volume and wetting
cessibility, heat distortion temperature, and decrease the gasteractions between the fillers and the polymer.
permeability of the blend§2]. Despite the utility of filled Recently, we proposed a new model to describe phase
polymer systems, many aspects of the physical and mecharieparation in a binary mixture with mobile hard particles that
cal behavior of these composites are still poorly understoodare preferentially wet by one of the two componefitd].
One of the most interesting and important questions deal$his model combines the cell dynamical systef@DS)
with the structural evolution and final morphology of a bi- equation of motion for the order parameter with Langevin
nary polymer blend in the presence of the fillers. Under-dynamics for the hard particles. Excluded volume constraints
standing the influence of the particles on the thermodynamare enforced for all particle jumps. On the boundary of each
ics and kinetics of binary mixtures is necessary for predictingparticle, zero-flux and constant-order parameter conditions
the long-term stability and mechanical properties of the comare implemented at every time step. The model allows us to
posites. analyze the role of particles in the phase separation dynam-
Phase separation in binary mixtures has been studied exs. We show that as the particle concentration is increased,
tensively[3]. In numerous experimental and computationalthe domain growth slows down progressively from the
studies, it has been shown that the characteristic domain sizéfshitz-Slyozovt'® law. This result is in qualitative agree-
R(t) grows asymptotically asR(t)~t*, with a=1/3  ment with experimental observations of Tanaaal. [15]
(Lifshitz-Slyozov law [4]. Hydrodynamic effects increase We also find that for large concentrations of particles, the
the growth exponent and, for the long-time behavior of bi-domain growth stalls, and the final domain size is a compli-

nary fluids, different values af ranging from 1/2 to 13,5—  cated function of the particle concentration and the diffusion
7] have been suggested. The structure facgfk,t) constant.
=(W(k,t)¥(—k,t)), whereW¥(k,t) is a Fourier transform The observed resulslowing down of the domain growth
of the order paramete¥ (r,t), apparently obeys the dynami- at the late stagebears a remarkable resemblance to some
cal scaling hypothesis, recent studies indicating the possibility of pinning in phase-
separating systems with quenched disorder. Huse and Henley
S(k,t)~R9(t) F(KR(1)), (1) [16] suggested a theoretical mechanism of pinr{iogarith-

mic slowing down in Ising systems with nonconserved dy-

where F(x) is a time-independent, universal scaling func-namics and static random impurities. Simulations by Srolo-
tion. This observation has been confirmed by many numerivitz and Hassold[17] showed late-stage pinning in the
cal simulations and experimer{t3,8,9. nonconserved Ising system with mobile impurities. Guyre

The introduction of a third component in the form of solid et al. [18] demonstrated the late-stage pinning in the con-
mobile particles significantly increases the complexity of theserved time-dependent Ginzburg-Landau kinetics with
problem. Particles introduce new length and time scalesquenched impurities. Glotzest al. [19] observed and theo-
generate new interfaces, and modify the morphology of theetically described pinning in an Ising lattice gas with two
system at all stages. One can expect that the simple dynandisparate energy scales. Slowing down of the phase separa-
cal scaling hypothesis is no longer valid, and that many diftion was experimentally observed for binary fluids in gels
ferent forms of asymptotic behavior can be found depending20,21]. All these different systems exhibit different scaling
on the particle-particle and particle-fluid interactions. Nu-laws and different pinning mechanisms; however, they all
merical studies of ternary water-oil-surfactant mixturg8—  present strong evidence that any impurities in phase-
12] showed many new and interesting features, e.g., theeparating binary mixtures tend to stop or significantly slow
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down the phase-separation process at the late stage. The case a
of hard mobile particles with excluded volume has not yet
been studied in this context. Understanding the behavior of ky

this system is important for the description and classification o

of different pinning mechanisms in the phase-separation pro- B "k, A B
cess.

In this paper, we present a simple rate-equation model
describing the late-stage slowing down of the domain growth b
in binary mixtures with hard mobile particles, and compare
theoretical predictions with computer simulation results. The CéA

A B

b

model is described in Sec. Il. In Sec. lll, we describe the
computational methofll 4] used to study the particle dynam-
ics in a phase-separating mixture. Simulation results are
compared with theoretical predictions. Finally, in Sec. IV we
summarize our results and describe possible extensions of
the model. FIG. 1. Elementary processes in the particle-interface interac-

tion: particle “jumps” over the interfacéa); interface “overtakes”

B particle (b). Note that the particles are wet by componant

Il. THEORY
ko

A. Kinetic equations
B+C— A+IC, 3

We consider a phase-separating, binAly mixture. The

system is characterized by the order parameerp,  wherek, is the reaction constant arids the number of the

—ps (pa, pp are the local densities of tieandB compo-  newly created interfacial segments. It can be intuitively seen

nents. In this mixture, hard particles of radit®, are ran-  that the reverse reaction can be disregarded since the prob-

domly dispersed. The particle concentratiois small, i.e., ability of an interface spontaneously ‘“surrounding” ah

the interparticle distance™ "“>R,> £, whereé is the width  particle is extremely small, especially at the late stage, where

of an AB interface. Particles are preferentially wet by com-interfaces are relatively “flat.(Taking the reverse reaction

ponentA and move diffusively, with a diffusion constabt  into account does not change the qualitative results but

The system separates inferich and B-rich domains. Let merely renormalizes the effective domain growth ate.

N_(t) and n_(t)=N_(t)/L be the total number and the  To write down kinetic equations, we introduce a new vari-

density of particles that are iB-rich domains at time, and  able, the “interface area densityd=S/LY (whereS is the

N, ()=N-=N_(t), n,(t)=n—n_(t) be the total number total area of allAB interfaces and. is the system size This

and the density of particles that areArrich domains. Here, variable is inversely proportional t8(t), the characteristic

L is the system size ardiis the space dimensionality. In the domain size o~ 1/R(t) [22]. In the absence of particles;

following, we will setd= 2, although the theory can be eas- decreases according to the Lifshitz-Slyozov lawt =13,

ily extended to any dimensionality. When particles are present, additional interfaces are created
The densities1, andn_ change due to the motion of the according to reactio), and the overall evolution af can

particles and the interfaces. Such changes can be describgd described by the following differential equation:
as “reactions” of particles with interfacial segments. Since

these “reactions” involve interfaces, they also affect the do- do 4

main growth and coarsening rate. In particular, one can ex- at —Acttka(l=1)n_o. (4)

pect that when the number of particles and their mobility

increase, the coarsening rate would slow down at the verfThe proportionality constan& has dimensionalityl. T2

late stage of the phase separation; this conclusion is comand describes the growth of the characteristic size in a

firmed by the simulationgl4]. particle-free system. The concentration of the particles in the
To derive kinetic equations for this system, we considerB phase is described by a second kinetic equation,

the two most elementary processes between particles and in-

terfaces. In the first ongFig. 1(a)], particles simply jump dn_

over the nearest interface. If we denote the particle in the dt

A-rich phase asi, the particle in theB-rich phase a$, and

the interface segment & the reaction can be written as  and n,=n—n_. Equations(4) and (5) must be supple-

mented with initial conditions fofo(t=0) andn_(t=0).

:_kzn_U'_k_ln_O'+k1n+O', (5)

Ky

A+C=B+C, ) Although these equations are highly nonlinear, and the gen-
- eral analytical solution cannot be obtained, we can study the
fixed points and numerically describe the evolution of the
with reaction constant&; and k_; for the direct and the system(23].
inverse reactions. In the second reactidfig. 1b)], the .
B. Dynamics

boundary layer of a3 particle merges with thé domain,
increasing the total length of the interface between the two We analyze the evolution of the system numerically by
domains. The reaction can be written as integrating Egs(4) and (5). To perform the integration, we
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first convert Eqs(4) and(5) into the dimensionless form by n~2 we can no longer neglect the multiparticle processes
introducing new variables,7=t/T, x=n_/n, y=oR, (proportional ton? and higher-order terms in). For such
=Ro/R, and parametersT=R3/A, A=ky(I-1)R§/A, €1 systems, interface pinning would presumably occurRat
=kiR3/A, and e ;=k_;RY/A. The new dimensionless ~n-V2 preempting the steady state described by the current

equations have a simple form, theory. This condition imposes a lower bound on the diffu-
dy sion constantD >AnY2 Below this value, the final domain
= 4+ 2N dXY, (6)  size is D-independent and equal to~*2 Thus, the final
;

domain size depends strongly @nin the regionAn'?<D

dx <AIR,. In this region,R* «D 13 while for D>A/R,, R*
—=—(N+e+e_ )XY+ ey, (7) is almostD-independent.

dr The dependence of the final domain size on the particle

where ¢ is the two-dimensional “volume fraction” of the concentration is also interesting. W?,;'nd that =0, the
final domain size is proportional to ~'<[25]. This result is

particles. We use a simple Euler scheme and forward inted he f h hen th ic| . bile. th |
grate Eqs(6) and(7) with a time stepd7=0.25 in the range du€ t0 the fact that when the particles are immobile, the only

0<r<10 with the initial conditionsx(0)=0, y(0)=0.8. relevant length sc_ale is the interparticle distancé’?. For_
We seth=1.0, ¢=0.16, € _,=3.4e;, A=0.023,Ry=2, T nonzeroP, there is a crossover between the “geometric”
=350, and perform calculations far, =0.1,0.2,0.375,0.75, Pinning R~n"%2 and the “kinetic” steady-state siz&*

and 1.(The ratio e_; /e, is selected to fit the simulation ~(A/Dn)*3. This crossover occurs near the particle concen-
results for the dependence of the final domain &%eon the  tration n~(D/A)%: whenn>n, the characteristic length is
diffusion constanD—see Sec. ”[) The resulting “trajeCtO' D_independent and scales agllz' when n<ﬁ the charac-

ries” y(7) andx(7) [or their dimensional analod®(t) and  teristic length scales aDn) 3

n_(t)] are compared with the simulation data in Sec. Ill. The results of the fixed-point calculation and the depen-
dence of the final domain size on the particle number and the
C. Fixed point diffusion constant qualitatively resemble earlier experimen-

; ; ; I, theoretical, and numerical data. In their experiments
To find the fixed points of the system of Eq¢4) and(5), tal, d . . X d
we set the right-hand sides of both equations to zero. It id @nakaet al. [15] showed that for a relatively high particle

possible to solve the two equations exactly, and thus find th&f€"Sity, the characteristic domain size is frozen at the late
there is one stable fixed point: stage. For smaller densities, the characteristic size exhibits a

slow growth, with a growth exponent that is a function of the

Ky density, but always less than the Lifshitz-Slyozov exponent

nf:mn, (8) 1. Similar features were found in numerical and theoretical

27 models of phase ordering with quenched disorder. In particu-

1 A |13 A(Ky+ky+k_p)| 18 lar, Huse and Henley16] suggested that in an Ising-type_

R¥f = = :( 2 Mt 9) system with a nonconserved dynamics, there is a logarithmic
o \kyln* kikonl slowing down of the domain growth. This slowing down is

due to interface pinning on quenched immobile impurities.

Notice that, in general, the domain size saturates in thiSrolovitz and Hassold17] independently found a similar
mean-field analysis for any finite concentration of particleshehavior in their dynamical Monte Carlo simulations of the
In order to elucidate the dependence of the final domain SiZﬁonconserved |Sing model with diffusing impurities with
on the diffusion constarid, we need to postulate the depen- spin 0 (surfactantlike point particl¢s They also found that
dence of the rate constarits, k_1, andk; on D. Bothk;  the final characteristic domain size depends on the diffusion
andk_; must be proportional td because they are directly constant; the increase in defect mobility leads to the decrease
related to the “hopping probability” of particles near inter- in the final domain size. Gyuret al.[18] analyzed the con-
faces. On the other hand, has a contribution from the served time-dependent Ginzburg-Landau system with
motion of an interface segment near a stationary particle, anquenched immobile impurities and also found a slowing
thus can be considerddtindependentat least to a first ap- down at the late stage, consistent with the interface pinning

proximation). With this in mind, we obtain model of Huse and Henley. Although all these studies offer
3 qualitative support to our theory, it is not clear whether any

R _R At (ag+ a_1)D) ~(AIDR)Y(1+ BD)*8 of them are actually in the same universality class. Thus, to

0 2¢a,D ' test predictions of the mean-field kinetic model in a more

(10 systematic way, we performed a series of simulations de-

scribed in the next section.
wherea,=¢€,/D, «_1=€_4/D, B~Ry/A, and\ has been

defined above. These constants are independebtafdn.

It is easy to see from Eq10) that R* decreases when
either the particle density or the diffusion constant are in-
creased. For largd (D>~ 1), R* is D-independent; for We consider a phase-separating, symmetric, bisBy
smallD (D<B7 %), R*«D % Note that for very smalD, mixture that is characterized by the scalar order parameter,
the model must break down. Indeed, once the characteristi#’. The phase-separation dynamics are described by the
size R* becomes comparable with the interparticle distanceCahn-Hilliard equation,

Ill. SIMULATIONS
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EAG ) SF f(W) controls the local dynamics of each site. It is critical
o T IVisg & (1) thatf has a single unstable fixed point and two stable fixed
points symmetrically located on each side of the unstable

whereT is a kinetic coefficient¢ is a conserved zero mean fiXxed point. Its exact functional form is not important for
Gaussian white noise with covarianck(r,t)&(r',t')) studymg the un|ver§al properties of the phase-separation dy-
= —G,V25(r—r')s(t—t'), and F is a free energy usually namics, as noted in Ref26]. Here, we _select the map
given by the Ginzburg-Landau functional, f(W)=A tanh@), with A<1 above the critical temperature
andA>1 below.
r u C In addition to these equations, the following boundary
f:f df[ - 5‘1’2+Z‘I’4+E(V‘1’)2 : (120 condition is imposed in the vicinity of each particle:
Y(r,t)=¥, and d,F(r,t)=0 if Ry<|r—Ri(t)|<Ry+a,
Into this system we introduce small spherical particles ofwhere a is the lattice spacing and, denotes the normal
radius Ry that undergo Brownian motion. The particle dy- derivative. Here, we seW =1 so that the particles are
namics are described by the following Langevin equation: ‘“coated” by fluid A. This condition can mimic either of two
casesli) the filler particles have been pretreated with a poly-
Ri=Mf,+x, (13  mer coating, or(ii) the adhesion between one of the two
componentge.g., fluidA) and the surface of the particle is
whereM is mobility, f; is the force acting on thith particle  yery strong compared to boktT and the surface adhesion of
due to all the other particles, anglrepresents the Gaussian the other component. The,F=0 condition ensures zero
white noise  (ma(r.t) mp(r',t'))=Ga8(r—r')8(t  flux of W into the particles since plays the role of a chemi-
—t')6ijd,p- In this study, we neglect interactions betweenca| potential.
partiCleS(i.e., fi=O) and Only take into account the partiCIeS’ We performed a series of simulations on a 25%6 lat-
diffusive motion. We also disregard osmotic effe(ﬂ.‘E., tice, Varying the partide numbé&t from 0 to 300 and keep-
coupling between the particle motion and the order parammng the diffusion constant fixed 4 =0.025. These results
eter field. have been reported elsewhdrs4]. The characteristic do-
The simulation is carried out in two dimensions; our lat- main size showed a marked slowing down for the systems
tice is 256< 256 sites in size, with periodic boundary condi- \yith large values ofN (N>150); however, the simulation
tions in both thex andy directions. A cell-dynamical-system time (T=20000 time stepswas insufficient to observe a
(CDS) method[26] is used to update the value ¥f for the  complete saturation of the domain size, much less to deter-

phase-separatingB mixture. Note that¥'=1(—1) corre-  mine the origin(kinetic or geometricfor the pinning mecha-
sponds to the equilibrium order parameter for #heaich  pigm.

(B-rich) phase. By employing CDS modelifgather than a
conventional discretization scheneve can significantly in-
crease the computational speed of the simulation. To simu-
late the particle dynamics, we discretize Efj3) and only
allow the particles to move between different lattice sites. A 80|
“Kawasaki exchange” mechanism is used for each particle
move: first, the order parameter values from all the cells to R o70r
be occupied by a particle in its “new” position are moved to
the “old” position; next, the boundary and excluded volume o1
conditions are imposed for the order parameter at the “new”
particle position. This mechanism ensures conservation of
the order parameter. Such dynamics may break down for

large particle mobilities, so we considered only the case o o o oo oo
where the diffusion constant is rather Igalmost all particle
“jumps” are to neighboring sites The discretized equations
of motion have the following form:

100

Q

90 -

50 -

50

40 -

W(rt+1)=F[W(r,t)] - (F[W(r,t)]-W(r,t)))+&r,b),
FIW(r,t)]=f(W(r,t))+D[{(¥(r,t)))—W(r,t)], o a0l
f(P)=AtanH V),

20

where{(*)) is the isotropic spatial average apd*))—*] Bom So10 som o0 o4

can be thought of as a discretized generalization of the La- °

placian. In the following studies we sét=1.3, D=0.5, FIG. 2. Final domain siz&R* vs diffusion constanD for the

M=1.0, andG;=0. N=600 system: linear scalga) and scaled coordinatep
The functionF in Eq. (14) has a local driving terniand  =(R*)®D vs D (b). Solid line represents the best fit=(R*)°D

a term arising from the interaction with other sites; the map=1.05+4.8(. Vertical lines represent error bars.
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FIG. 3. Morphologies of a phase separating system With600 particles for different diffusion constan3:=0.004,t=50 000(a) and
t=80000(b); D=0.015,t=50 000(c) andt=80 000(d); D=0.04,t=50 000(e) andt= 80 000(f). The white regions represent therich
phase, the dark regions correspond to Baech phase, and the small black squares represent the particles.

The difficulty in studying the late stage of the phase-=200; the “true” saturation is not observed unhl=500
separation process, and especially the saturation of the deven up toT =100 000 time steps. But, increasing the num-
main size, stems from the fact that the parameter space fdyer of particles makes simulations extremely sl@ince, at
such studies is very narrow. In the system we consider, foevery time step, more and more operations are needed to
example, one cannot observe the slowing down of the doensure excluded volume constrajntds a result, the late-
main growth until the number of particles is larger thidn  stage pinning can be studied only in a relatively narrow win-
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FIG. 4. Number ofB3 particles in the “steady stateN* vs the
“steady-state” domain sizeR* (log-log ploY. Solid line has a
slope of—3. b

dow of particle concentrations (586N<<800) and the direct
comparison of the theory and simulation is somewhat diffi-
cult. It is easier to vary the diffusion constadt however,
whenD becomes largel{>0.08), the dynamics become un-
stable and dependent on specific rules of the order paramett
updates during particle “jumps.” Indeed, the proposed lat-
tice dynamics require that most particle moves occur only
between the neighboring sites. Thus, the diffusion constan
can be varied only in the region<0D <0.08.

To study the dependence of the characteristic domain sizi
on the particle diffusion constant, we performed a set of
simulations for the system withl=600(¢=0.16), for five 15 v v s 00
different values ofD=0.0038, 0.0076, 0.015, 0.030, and 1
0.038. The domain growth slows down for all systems after o o ) _
approximately 20000 timesteps. For eveby the results FIG. 5. C_haractgrlstlc domain si&(t)—simulation resultsa)
were averaged over two independent runs of 100000 tim@nd calculations using Eqéd) and (5)(b).
steps each. In Fig.(d) we plot the dependence of the final ) ) )
domain sizeR* onD and the best two-parameter fit from Eq. dynamical “steady-state” saturation of the domain growth
(10), with \=1.0, a;=25.0, ande_,=85.0. The same data observed for the systems with fast particjés—(f)].
are replotted in Fig. @) using the scaled coordinatgs Anot_her important characterlstlc o_f the Igte—stage “steady
=(R*)3D versusD, in which the curvep(D) should be a state” is the (_:oncer_1trat|0n of pa_rt|cles in _the “Wror_lg”
straight line according to Eq10). It can be seen that the phase. In the S|mulat|ons, we consider a particle to be in the
agreement between the simulation data and the theory is rearong” (B) phase if the total order parameter summed over
sonably good, albeit over a limited range factor of 10 in all Iatt_lce sites adjacent to the particle’s “boundary layer” is
diffusion constant. negative. It can be seen from E®) that the dependence of

To better visualize the morphologies of the systems in thdd” on R* within the mean-field theory is described by an
“steady-state” regime, snapshots of the configurations at €xact power lawN* «(R*) ~?, with 5= 3. Within the mean-
=50000 and=80000 are shown for three different diffu- field approximation, this exponent is independent of the
sion constant$Figs. 3a)—3(f)]. It can be seen that for the space dimensionalitd. We plot the dependence & on
smallestD [Figs. 3a) and 3b)], the majority of the domains R*, calculated for several values &f and for the fixedN
did not change their shape or position. For the intermediate= 600, in Fig. 4. The data clearly are consistent with the
D [Figs. 3c) and 3d)], a small change in shape or position theoretical prediction o6=3, although over a limited range
occurs for a significant fraction of all domains. Finally, for in D.
the largesD [Figs. 3e) and 3f)], most domains have some-  Finally, we apply our mean-field rate-equation model to
what changed their shape between the two snapshots. Notescribe the dynamics of the system. Instead of looking only
that the characteristic size does not change within the pairgt the fixed point, we numerically integrate E¢) and (5)
although clearly it is different for systems with different val- with initial conditionsN_(t=0)=0, o(t=0)=0.8 to obtain
ues ofD. These pictures clearly illustrate the structural dif- the “trajectories” R(t) =1/o(t) and N_(t). The details of
ference between the “geometric” pinning seen for the sys-the integration are described in Sec. Il. In Fig$a)5and
tems with immobile or slow particlega) and (b)] and the  5(b)], simulated and theoretical trajectoriBét) are plotted
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for several values oD. It can be seen that the mean-field computer simulations. Using the combined cell dynamical
trajectories reproduce the general treridhe saturation do- systemgCDS) and Langevin equations, we simulated phase
main size increases with a decreas®irthe transition from  separation in the presence of hard mobile filler particles and
the early growth regime to the late-stage regime occurs agstudied the dependence of the domain growth rate on the
proximately at the same time for all the curyeBut the  particle mobility, keeping the total number of particles fixed
mean-field calculations underestimate the width of the crossiN=600 on a 256256 latice. We observed a complete
over region. This phenomenon is also seen in the calc;ulatiogaturation of the domain growth at the late stage and deter-
of the dependence ®_ ont, where the role of fluctuations ineq the characteristic domain size at saturation. The de-
is even more significant and the crossover region becomes.qence of this characteristic size on the particle diffusion
even broader. constant shows a monotonic decrease, in qualitative agree-
ment with theoretical predictions. We also measured the de-
pendence of the number of particles in the “wrong” phase,

We have developed a mean-field rate-equation model td!-, on the characteristic siz&*. The results for this de-
describe the influence of hard mobile particles on the latéendence are consistent with the theoretical prediction,
stage of phase separation in binary mixtures. This model ig(R*) 3, albeit over a relatively limited range iR, (a
based on an assumption that in a relatively dildmwv-  factor of 2. To verify the exponend, additional simulations
particle-density system, the influence of particles can be pri-and/or theoretical studies are necessary.
marily attributed to their interactions with interfaces. Due to  The proposed dependences of the “steady-state” domain
the asymmetry between the two phagése particles are sizeR* on the diffusion constarid and the particle density
preferentially wet by componer), the interaction of a sta- have a mean-field nature and are expected to break down for
tionary “B particle” with a moving interface has no inverse |argen and/or for smalD, when the interparticle correlations
reaction(the interface cannot pass through ad particle”).  and the density fluctuations become important. It is also pos-
This irreversible “reaction,” in combination with othdre-  sjp|e that some additional corrections should be introduced
yerS|bIe) processes due to t_he particle diffusion, creates NeWia the dependences of the kinetic coefficieAk, ,k_;,
interfaces and thus dynamically slows down the coarseningqy  on the “observables’D andn. Elucidation of these
process. If the particles are sufficiently mobile, interface CreLorrections would also require significant computational

?tlon and ann,|7h|Iat|on offset each other, thereby forming ay, jies to increase the range of available densities and diffu-
steady state.” Although interfaces are highly mobile and sion constants

domains change shape relatively rapidly, the characteristic We plan to expand the proposed kinetic model to study

Z'Zﬁndofﬁ n?ttgrO\tN’ an(: thi(?nove_lr_?llil mr?]rpthIﬁ?yrAO?kac}n}”?&he effects of other phenomena, such as wetting strength,
uring the late-stage regime. S mechanism 1S erenhow field, and interparticle interaction, on the kinetics of

from the '_‘geomei‘”ca'" pinning de_scribed for _the case of hase separation. Such studies are currently underway.
immobile impurities. In that case, interfaces simply cannotp

move because of the network of obstacles, and all domains D.J. gratefully acknowledges financial support from the

remain unchanged for very long times. When the particlefNSF through Grant No. DMR9217935. D.J. and A.C.B.
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